Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spray-ILGAR ZnS nanodots/In2S3 as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)2 solar cells

Identifieur interne : 000506 ( Main/Repository ); précédent : 000505; suivant : 000507

Spray-ILGAR ZnS nanodots/In2S3 as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)2 solar cells

Auteurs : RBID : Pascal:13-0303899

Descripteurs français

English descriptors

Abstract

The sequential and cyclic spray ion layer gas reaction (spray-ILGAR) technique allows the deposition of metal chalcogenide films controllable from monodispersed nanodots to homogeneous compact layer. With access to this technique, a structured buffer layer for Cu(In,Ga)(S,Se)2 cells, named "defect passivation/point contact bilayer buffer" is introduced at the heterogeneous interfaces to replace the conventional toxic CdS buffe Prod. Type: FTPr material and to improve the pure In2S3 buffer. Here, the spray-ILGAR ZnS nanodots serve as a passivation layer with a reduced interface recombination, while the compact spray-ILGAR In2S3 film on top and in-between the nanodots acts as point contact layer for the charge carrier transport. The optimal ZnS dot density and In2S3 thickness are determined and discussed in detail. As yet, the solar cell efficiency with ZnS/In2S3 buffer layer can be improved by about 1.5% absolutely as compared to a pure In2S3 buffered cell. Apart from the electronic properties of the absorber/ buffer interface, also the chemical and diffusion processes during junction formation, which may influence the properties of the completed solar cell, are investigated and discussed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0303899

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spray-ILGAR ZnS nanodots/In
<sub>2</sub>
S
<sub>3</sub>
as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)
<sub>2</sub>
solar cells</title>
<author>
<name>YANPENG FU</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saez Araoz, Rodrigo" uniqKey="Saez Araoz R">Rodrigo Saez-Araoz</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Tristan" uniqKey="Kohler T">Tristan Köhler</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kr Ger, Martin" uniqKey="Kr Ger M">Martin Kr Ger</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steigert, Alexander" uniqKey="Steigert A">Alexander Steigert</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lauermann, Iver" uniqKey="Lauermann I">Iver Lauermann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lux Steiner, Martha Ch" uniqKey="Lux Steiner M">Martha Ch. Lux-Steiner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fischer, Christian Herbert" uniqKey="Fischer C">Christian-Herbert Fischer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0303899</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0303899 INIST</idno>
<idno type="RBID">Pascal:13-0303899</idno>
<idno type="wicri:Area/Main/Corpus">000744</idno>
<idno type="wicri:Area/Main/Repository">000506</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Bilayers</term>
<term>Buffer layer</term>
<term>Buffer system</term>
<term>Cadmium sulfide</term>
<term>Chalcopyrite</term>
<term>Charge carrier</term>
<term>Charge transport</term>
<term>Chemical diffusion</term>
<term>Comparative study</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Copper sulfide</term>
<term>Diffusion junction</term>
<term>Diffusion process</term>
<term>Electronic properties</term>
<term>Gallium selenides</term>
<term>Gallium sulfide</term>
<term>Indium selenides</term>
<term>Indium sulfide</term>
<term>Metallic thin films</term>
<term>Passivation</term>
<term>Point contact</term>
<term>Solar cell</term>
<term>Thickness</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Passivation</term>
<term>Contact ponctuel</term>
<term>Système tampon</term>
<term>Cellule solaire</term>
<term>Couche mince métallique</term>
<term>Couche tampon</term>
<term>Porteur charge</term>
<term>Transport charge</term>
<term>Epaisseur</term>
<term>Taux conversion</term>
<term>Etude comparative</term>
<term>Propriété électronique</term>
<term>Matériau absorbant</term>
<term>Diffusion chimique</term>
<term>Jonction diffusion</term>
<term>Processus diffusion</term>
<term>Sulfure de zinc</term>
<term>Sulfure d'indium</term>
<term>Bicouche</term>
<term>Sulfure de gallium</term>
<term>Sulfure de cuivre</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Sulfure de cadmium</term>
<term>Chalcopyrite</term>
<term>ZnS</term>
<term>In2S3</term>
<term>Cu(In,Ga)(S,Se)2</term>
<term>CdS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sequential and cyclic spray ion layer gas reaction (spray-ILGAR) technique allows the deposition of metal chalcogenide films controllable from monodispersed nanodots to homogeneous compact layer. With access to this technique, a structured buffer layer for Cu(In,Ga)(S,Se)
<sub>2</sub>
cells, named "defect passivation/point contact bilayer buffer" is introduced at the heterogeneous interfaces to replace the conventional toxic CdS buffe Prod. Type: FTPr material and to improve the pure In
<sub>2</sub>
S
<sub>3</sub>
buffer. Here, the spray-ILGAR ZnS nanodots serve as a passivation layer with a reduced interface recombination, while the compact spray-ILGAR In
<sub>2</sub>
S
<sub>3</sub>
film on top and in-between the nanodots acts as point contact layer for the charge carrier transport. The optimal ZnS dot density and In
<sub>2</sub>
S
<sub>3</sub>
thickness are determined and discussed in detail. As yet, the solar cell efficiency with ZnS/In
<sub>2</sub>
S
<sub>3</sub>
buffer layer can be improved by about 1.5% absolutely as compared to a pure In
<sub>2</sub>
S
<sub>3</sub>
buffered cell. Apart from the electronic properties of the absorber/ buffer interface, also the chemical and diffusion processes during junction formation, which may influence the properties of the completed solar cell, are investigated and discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spray-ILGAR ZnS nanodots/In
<sub>2</sub>
S
<sub>3</sub>
as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)
<sub>2</sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YANPENG FU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SAEZ-ARAOZ (Rodrigo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KÖHLER (Tristan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KRÜGER (Martin)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>STEIGERT (Alexander)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LAUERMANN (Iver)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LUX-STEINER (Martha Ch.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>FISCHER (Christian-Herbert)</s1>
</fA11>
<fA14 i1="01">
<s1>Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>293-299</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110470</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0303899</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The sequential and cyclic spray ion layer gas reaction (spray-ILGAR) technique allows the deposition of metal chalcogenide films controllable from monodispersed nanodots to homogeneous compact layer. With access to this technique, a structured buffer layer for Cu(In,Ga)(S,Se)
<sub>2</sub>
cells, named "defect passivation/point contact bilayer buffer" is introduced at the heterogeneous interfaces to replace the conventional toxic CdS buffe Prod. Type: FTPr material and to improve the pure In
<sub>2</sub>
S
<sub>3</sub>
buffer. Here, the spray-ILGAR ZnS nanodots serve as a passivation layer with a reduced interface recombination, while the compact spray-ILGAR In
<sub>2</sub>
S
<sub>3</sub>
film on top and in-between the nanodots acts as point contact layer for the charge carrier transport. The optimal ZnS dot density and In
<sub>2</sub>
S
<sub>3</sub>
thickness are determined and discussed in detail. As yet, the solar cell efficiency with ZnS/In
<sub>2</sub>
S
<sub>3</sub>
buffer layer can be improved by about 1.5% absolutely as compared to a pure In
<sub>2</sub>
S
<sub>3</sub>
buffered cell. Apart from the electronic properties of the absorber/ buffer interface, also the chemical and diffusion processes during junction formation, which may influence the properties of the completed solar cell, are investigated and discussed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Passivation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Passivation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Pasivación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Contact ponctuel</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Point contact</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Contacto puntual</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince métallique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Metallic thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Porteur charge</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Charge carrier</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Portador carga</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transport charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Charge transport</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Diffusion chimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Chemical diffusion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Difusión química</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Jonction diffusion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Diffusion junction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Unión difusión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Processus diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Diffusion process</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Proceso difusión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sulfure de gallium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Gallium sulfide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Galio sulfuro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>In2S3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Cu(In,Ga)(S,Se)2</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000506 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000506 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0303899
   |texte=   Spray-ILGAR ZnS nanodots/In2S3 as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024